October 19, 2017

12.05.10- White Dwarf Lite?

 

A comparison of Kepler's latest planetary finds. (Graphic Credit: NASA).

A comparison of Kepler's latest planetary finds. (Graphic Credit: NASA).

 

   The Kepler space telescope may have bagged an unexpected prize during its hunt for exo-planets. Along with five published exoplanets illustrated above, Kepler snared two potentially bizarre objects. Dubbed KOI (Kepler Objects of Interest) -81 and 74, these companions actually appear dimmer passing behind the parent star rather than in front of it. This suggests a bright luminous object(s) with an Earth-like diameter but much more massive… a white dwarf? Possibly, but the objects seem to be physically too large to fit this class of objects. White dwarfs have an upper limit of about 1.4 solar masses, also known famously as the Chandrasekhar limit. Recently, scientist Jason Rowe of NASA Ames research center has been able to directly measure the masses of these companions by measuring the way the companions physically warp, or distort the bodies of their primary companions. The result; these stars are in the realm of 0.1 solar masses, which would make them some the lightest white dwarfs known. Obviously, this also becomes a problem because although small and luminous, KOI-81 and -74 probably aren’t supported solely by electron degeneracy pressure that characterizes standard classical white dwarfs. The situation just got stranger and stranger… were these objects large super-heated planets or light white dwarfs?

Enter an international team of astronomers meeting at Kavli Institute in Peking (Beijing) China. Using an innovative technique known as Doppler boosting, they were able to pinpoint the mystery objects mass at 0.2 solar masses, on the low end but still in the realm of a white dwarf. This makes even more sense if one considers a white dwarf accreting mass from a primary companion, ala a Type 1A supernovae candidate…(hey, didn’t we write in this space last week about the lack of these beasties?)   Doppler boosting works in terms of catching subtle fluctuations in the brightening of an approaching object as measured by photons received over a given unit of time and dimming as it recedes…altogether a complicated affair, considering this must be untangled from a flurry of other signals. This unexpected find illustrates that surreptitious discoveries are often the norm in astronomy, if only someone is willing to look for them!