You are here: Home / Archives for solar mass
The Sky is Waiting.
The Current Number of Exoplanets Discovered is: 3989
Pictured is a Delta IV rocket launch from Cape Canaveral on November 21st, 2010. The image is a 20 second exposure taken at dusk, shot from about 100 miles west of the launch site. The launch placed a classified payload in orbit for the United States Air Force.
Difficult but not impossible to catch against the dawn or dusk sky, spotting an extreme crescent moon can be a challenge. The slender crescent pictured was shot 30 minutes before sunrise when the Moon was less than 20 hours away from New. A true feat of visual athletics to catch, a good pair of binoculars or a well aimed wide field telescopic view can help with the hunt.
The Sun is our nearest star, and goes through an 11-year cycle of activity. This image was taken via a properly filtered telescope, and shows the Sun as it appeared during its last maximum peak in 2003. This was during solar cycle #23, a period during which the Sun hurled several large flares Earthward. The next solar cycle is due to peak around 2013-14.
Located in the belt of the constellation Orion, Messier 42, also known as the Orion Nebula is one of the finest deep sky objects in the northern hemisphere sky. Just visible as a faint smudge to the naked eye on a clear dark night, the Orion Nebula is a sure star party favorite, as it shows tendrils of gas contrasted with bright stars. M42 is a large stellar nursery, a star forming region about 1,000 light years distant.
Orbiting the planet in Low Earth Orbit (LEO) every 90 minutes, many people fail to realize that you can see the International Space Station (ISS) from most of the planet on a near-weekly basis. In fact, the ISS has been known to make up to four visible passes over the same location in one night. The image pictured is from the Fourth of July, 2011 and is a 20 second exposure of a bright ISS pass.
Next to the Sun, the two brightest objects in the sky are the Moon and the planet Venus. In fact, when Venus is favorably placed next to the Moon, it might just be possible to spot the two in the daytime. Another intriguing effect known as earthshine or ashen light is also seen in the image on the night side of the Moon; this is caused by sunlight reflected back off of the Earth towards our only satellite.
A mosaic of three images taken during the total lunar eclipse of December 21st, 2010. The eclipse occurred the same day as the winter solstice. The curve and size of the Earth’s shadow is apparent in the image.
Copyright © 2019 · Education Theme on Genesis Framework · WordPress · Log in
12.05.10- White Dwarf Lite?
The Kepler space telescope may have bagged an unexpected prize during its hunt for exo-planets. Along with five published exoplanets illustrated above, Kepler snared two potentially bizarre objects. Dubbed KOI (Kepler Objects of Interest) -81 and 74, these companions actually appear dimmer passing behind the parent star rather than in front of it. This suggests a bright luminous object(s) with an Earth-like diameter but much more massive… a white dwarf? Possibly, but the objects seem to be physically too large to fit this class of objects. White dwarfs have an upper limit of about 1.4 solar masses, also known famously as the Chandrasekhar limit. Recently, scientist Jason Rowe of NASA Ames research center has been able to directly measure the masses of these companions by measuring the way the companions physically warp, or distort the bodies of their primary companions. The result; these stars are in the realm of 0.1 solar masses, which would make them some the lightest white dwarfs known. Obviously, this also becomes a problem because although small and luminous, KOI-81 and -74 probably aren’t supported solely by electron degeneracy pressure that characterizes standard classical white dwarfs. The situation just got stranger and stranger… were these objects large super-heated planets or light white dwarfs?
Enter an international team of astronomers meeting at Kavli Institute in Peking (Beijing) China. Using an innovative technique known as Doppler boosting, they were able to pinpoint the mystery objects mass at 0.2 solar masses, on the low end but still in the realm of a white dwarf. This makes even more sense if one considers a white dwarf accreting mass from a primary companion, ala a Type 1A supernovae candidate…(hey, didn’t we write in this space last week about the lack of these beasties?) Doppler boosting works in terms of catching subtle fluctuations in the brightening of an approaching object as measured by photons received over a given unit of time and dimming as it recedes…altogether a complicated affair, considering this must be untangled from a flurry of other signals. This unexpected find illustrates that surreptitious discoveries are often the norm in astronomy, if only someone is willing to look for them!