February 19, 2019

24.04.10-Our Existence: Justified.

The formation of the Earth poses a key dilemma to planetary accretionary theory; namely, why are we here at all? Standard models would say that the Earth and other planets coalesced out of the proto-solar nebula to form. However, spiral density waves within the same nebula should have drawn down orbital energy to shorten the planets orbit, slowly drawing it in. Looking at other “hot Jupiter” systems, that’s just what we see; large gas giant worlds that formed further out, only to migrate inward into tight orbits… just how did we end up in our nice, neat orbit?

Now, computational astrophysicist Mordecai-Mark Mac Loc at the American Museum of Natural History may have the answer. Accounting for temperature and spin variability, resonance key holes can occur; planets like Earth may simply spiral inward and get hung up in these safe zones between dragging pressure waves. Of course, a majority of proto-planets don’t make the cut and simply spiral inward to a fiery end, but they’re not around for us to see today. One discovery that would perhaps give observational weight to this theory would be the discovery of exo-Earths also parked in nice neat orbits… the Kepler space telescope may pave the way for this discovery as it stares off into Cygnus. For now, thank computational mathematics that you’re here reading this, just as it says you should be!