July 21, 2019

Astro-Challenge: Spot Neptune in its Original Discovery Position!

In this week’s astro-event, we challenge you, the sky watching public, to view the planet Neptune as it was first seen on the night of its discovery on September 23, 1846. On that evening, astronomer Johann Galle turned the Berlin Observatories’ 9-inch refractor on a position given to him by French mathematician Urbain Jean-Joseph Le Verrier, and the solar system hasn’t been the same since. The discovery of Neptune was a triumph for predictive mathematics and a good test of Newtonian mechanics in a celestial format.

[Read more...]

04.06.10- “Hot Jupiters” in Retrograde.

 

 

A unique battery of telescopes is revealing an unusual feature in many exoplanetary systems. Earlier this year, the Royal Astronomical Society unveiled nine new exoplanets, transiting “hot Jupiters” that cross the face of their parent star as seen from Earth. No big deal nowadays, as the exoplanet count sits at 455 and climbing, and at the time of discovery, 73 transiting exoplanets were known. What makes these beasties so unusual is that they all orbit their host in retrograde orbits. That is, their orbits run counter to their host stars’ rotation.  And just how do you discern the direction of motion for a transiting exoplanet? That’s our impromptu astro-vocabulary builder term of the day; the Rossiter-McLaughlin Effect.  The motion of a spinning star can be discerned in its spectra; the approaching limb is ever so slightly blue shifted, and the receding limb is red shifted. Enter our dark transiting body. When the planet enters the frame, a slight but perceptible “spectral mis-match” occurs; if this occurs in the blue shifted portion, the orbit is prograde; in the red shifted end, the orbit is retrograde. The observations were conducted via the Super-WASP (Wide Angle Search for Planets) consortium. This is a pair of robotic instruments each consisting of eight CCD coupled telephoto lenses (they’re Canon 200mm f/1.8s!) each capable of capturing a field of view 7.8° degrees square. Super-WASP North is located in the Canary Islands, while Super-WASP South is stationed at the site of the South African Observatory. These enable a cost affordable way to survey the entire sky looking for the tiny signature dimming of a transiting exoplanet. Conceived in the 1990s by Don Pollacco, Super-WASP has identified 26 extra-solar planets to date. How these retrograde hot Jupiters came to be remains to be solved… but it is still truly awesome how much data we can glean from a tiny string of photons!